Appendix 3.4-2: 走行サーベイによる空間線量率測定とガンマ線成分の同時測定

1) 概要

平成 23 年 12 月から開催された走行サーベイにおいて、KURAMAシステムを利用した原子 力機構中心の走行サーベイチームに同行し、放医研のモニタリングカー(以下、モニカー)に計 測機器を搭載し、測定を行った。主として午前中はKURAMAシステムによる走行サーベイチ ーム(以下、「KURAMAチーム」という。)の直後を走行し、同じ道路上を計測した。午後に なると、KURAMAチームとは分かれて、適切な地点においてモニカーを停止させて車内およ び車外の長時間(一般に各 30 分)計測を実施した。これにより、車内外のγ線環境を計測し、校 正等に役立てた。

今回、使用した計測機器は、福島原発事故後に放医研で開発されたラジプローブと呼ばれるシ ステムであり、各種のッ線スペクトロメータ(プローブとよぶ)のエネルギースペクトルを単位 時間(一般に5秒ごと)に、無線通信を通してノートコンピュータ(以下、「ノートPC」という) で収集し、記録した。また、このノートPCは、GPSにより正確な位置を記録し、さらに、車両前 方に向けたカメラにより走行箇所の静止画像を単位時間毎に記録した。また、モバイル通信機に より、ネットワークに接続でき、単位時間毎に、遠方にあるコンピューターサーバーにデータを アップロードすることができた。これにより、遠隔地においても、ラジプローブにより取得され ている、リアルタイムの情報が複数のクライアントにより参照されることができた。元来、ラジ プローブは緊急事態において、放射線スペクトルを取得し、安全の確保に役立てると共に、遠隔 地からラジプローブを通して指示を与えるために開発されたものである。このため、モバイル通 信には、衛星回線も利用可としている。

2) 測定装置

現在、プローブとしては、Mirion Technology 社製 HDS-100GN CsI(T1)スペクトロメータおよ びCanberra 社製 Falcon5000 電子冷却式可搬型 Ge スペクトロメータが利用可能である。HDS-100GN は、約3インチ直径の円筒形の CsI(T1)を内包し、30 keV~3 MeV の X線・ γ 線のエネルギースペ クトルを取得する。なお、空間線量率のデータも取得可能であるので、この HDS-100GN の空間線 量率データをその時の空間線量率とした。メーカーの仕様によれば空間線量率 0.01 μ Sv/h から 100 μ Sv/h で計測可能である。一方、Falcon 5000 は、直径 60mm、厚さ 30mm の HP-Ge 検出器を 持ち、その相対効率は約 18%である。計測可能エネルギー領域は、20keV~3. 0MeV で、MCA は最高 8192 チャンネルのレンジを持つ。

それぞれのスペクトルメータは、無線データ通信が可能であり、ラジプローブのノート PC から離れた場所に wireless で設置可能である。(図 3.4.2-1、図 3.4.2-2、図 3.4.2-3)

3) 計測方法

平成23年12月12日に、モニカーにより福島市へ移動し、そこでKURAMAチームと合流、 翌13日より12月23日まで、KURAMAチームと共に、拠点を移動させながら、上述の走行サ ーベイを実施した。他の走行サーベイチームと同様に、走行サーベイを開始する前には、各拠点 で設置されていた校正ポイントにおいて、空間線量率の計測を行った。また、単独での定点計測 の際には、広く平坦な場所を探して、モニカー内外のγ線エネルギースペクトルを各 30 分間計測 した。

検出器の設置場所については、モニカーの車中では、各検出器は後部荷物室のシート上に固定 した。検出部の高さは約1.5mであった。車外においては、ちょうど検出部の高さが1mになるよ うアルミ製(厚さ1mm程度)の作業台の上に設置し、計測を行った。車外での計測時には、モニ カーは10m以上離れた場所に移動させ、車内と同じ場所(高さ1m)に検出部が来るように設定し た。

放医研走行サーベイチームが走行した場所は、福島県、宮城県、岩手県、新潟県、群馬県、茨 城県、長野県、東京都そして千葉県の広範囲に及んだが、新潟県では積雪があった。

4) 解析方法

得られた単位時間毎のγ線スペクトルの解析は以下のように、文部科学省放射能測定法シリーズ7 "ゲルマニウム半導体検出器によるγ線スペクトロメトリー"、シリーズ33 "ゲルマニウム半導体検出器を用いた in-situ 測定"を参考にし、以下の条件・手順で行われた。

- Cs-134、Cs-137 及び K-40 の γ 線の光電ピークを 2 次微分法により見つけ出し、MCA のチャンネル値をエネルギーに変換する。低空間線量率地域での単位時間のデータでは、統計 誤差等により、ピークが判別しがたいために、前後 15 分のデータを積分し、ピークサー チを行った。
- 2. 光電ピークの値は、周辺環境の温度変化による検出器の応答の変化、あるいは、供給電源の不安定性に伴い、変動しているので、Cs-134 および K-40 等の主要な光電ピークを利用して、補正を行った。
- 3. K-40 のピークに対して、FWHM を決定し、その FWHM の値をその計測点での仮のエネルギー 分解能と定義した。
- 4. その他のγ線ピークに対して、上記の仮の FWHM の 2.5 倍分をプラスおよびマイナスした 値を各ピークの拡がりの上下の境界とし、直線近似することでピークの位置でのバックグ ランドの値を決定する。次に、そのピークの拡がりの真の FWHM を計算し、その 1.4 倍の 領域を新たなピークの拡がりの境界として、バックグランドも上下に FWHM の 1.4 倍の領 域の面積とする、コベル法により各ピークの面積(γ線の個数)を計算した。(u'=1.4× FWHM)
- 5. Cs-134 の 796keV と 802keV のピークについては、今回使用した可搬型 Ge 検出器の分解能 では重なってしまうので、それぞれの放出比から各面積を計算した。
- 各光電ピークの個数から、土壌沈着量(Bq/cm²)を計算する。この際、以下の仮定により 計算を行った。
 - (ア) 無限平面上の表面が汚染されているとし、放射性セシウム濃度が表面から深さ 方向に指数関数で減少し、表層の平均1g/cm²に汚染が広がっている。また自然放射性 元素の場合は深さ方向に対し一様に分布している。
 - (イ) Ge 検出器は等方的な感度を持つ。
 - (ウ) 車体の減衰率および車体の汚染について、後述の校正係数を利用。

この時、土壌沈着量の計算は、以下の式で表される。

$$C = \frac{N_E - b_E t}{k_E s_E \eta_E \pi r_{eff}^2 \varepsilon_E \gamma_E t}$$

ここで、 N_E は正味のピーク計数、 b_E はバックグランド計数率、tは計測時間、 k_E は幾何係数、 s_E は車体の透過率、 η_E はモニカー内外での計測高さ補正係数、 πr^2_{eff} は Ge 検出器の有効面積、 ϵ_E は検出効率、 γ_E は γ 線放出比、Eは γ 線のエネルギー。

- Cs-134 と Cs-137 の土壌沈着量を推定する際には、それぞれ 796keV の γ 線と 662keV の γ 線の光電ピークを利用した。(表 3.4.2-1)
- 5) 車両による遮蔽と車両の汚染によるバックグランドの補正

モニカーの筐体による遮蔽、または、設置位置(高さ)の違いのために、車内での計測結果は、 車外 1m 高さの計測結果とは異なっている。このために、車両内外における y 線スペクトルの各光 電ピークの計数値を比較し、各 y 線エネルギーにおける遮蔽の効果を推定した。

また、今回使用したモニカーは、福島第一原発の水素爆発の直前から、旧オフサイトセンター 近辺で活動し、タイヤハウス等の汚染が残っていることが確認されていた。しかしながら、可搬 型 Ge 検出器を利用したラジプローブでは、電源として高出力の 100V 電源が必要であり、放医研 が所有する唯一の適合した車両であったために、本モニカーを使用した。このために、車両のタ イヤボックス等の汚染に起因するγ線(主として Cs-134 及び Cs-137 による)の影響がみられた。 このために、上記の遮蔽の効果と同様に、各光電ピークに対する車両汚染の影響も推定した。

表 3. 4. 2-1 車両の透過率(s)と汚染によるバックグランド(b)の推定。Cs-137 の 662keV の光電ピークとCs-134 の 796keV の光電ピークの場合。ここで η は 662keV に対して 0. 903, 796keV

	662 keV	796 keV
透過率 s(%)	41.8 ± 4.8	44.6 \pm 5.7
バックグランド計数率 b (cps)	2.58 ± 0.55	2.13 ± 0.51

に対して 0.904 として透過率を計算した。

図 3.4.2-1 ラジプローブの概要

図 3.4.2-2 ラジプローブの可搬型 Ge 検出器 Falcon5000(左図) および助手席に設置さ れたノート PC、USB カメラ、GPS、モバイル通信機(右図)。検出器から無線ネットワー クでノート PC がデータを受け取っている。

図 3.4.2-3 ラジプローブの画面表示。左上のパネルで地図上での位置、および、各地点 の空間線量率をカラー表示し、また、右上のパネルで Falcon5000 もしくは HDS-100GN で計測された y 線スペクトラムを前後 15 分間積分して表示、左下のパネルには HDS-100GN による空間線量率、右下のパネルにはその地点での車両前方の静止画を表示 している。静止画には定点計測の様子が写っている。可搬型 Ge 検出器は車外でアルミ 製の作業台の上に設置されている。

図 3.4.2-4 土壌沈着量を計算するために解析されたパラメータなどの表示

図 3.4.2-5 車両による遮蔽率(s) と汚染によるバックグランド(b)の推定。 セシウム 134 の 796keV の光電ピークの場合。

6) ラジプローブによる走行サーベイの計測結果

各走行地点、あるいは、停止中の計測地点における、HDS-100GN による空間線量率を図 3.4.2-6 に表示し、その際の Cs-137 と Cs-134 の土壌沈着量の比を図 3.4.2-7 に示す。また、図 3.4.2-8 に時系列で空間線量率と土壌沈着量比を示す。福島第一原発事故由来の Cs-137 および Cs-134 の 土壌沈着量は、空間線量率と比例していることが予想される。Cs-137 の土壌沈着量と空間線量率 の関係を図 3.4.2-9 に示した。

図 3.4.2-6 HDS-100GN: CsI(T1)スペクトロメータによる空間線量率の分布

図 3.4.2-7 Falcon5000 によるセシウム 134 とセシウム 137 の土壌沈着量比の分布 (セシウム 134 とセシウム 137 の表面汚染密度比の測定誤差は約 10%であり、 統計的には一様な分布と考えられる。)

図 3.4.2-8 図 3.4.2-6 および図 3.4.2-7 の空間線量率と土壌沈着量比の時系列表示

図 3.4.2-9 空間線量率とセシウム 137 の土壌沈着量との関係。セシウム 137 による 汚染が無い、自然由来のγ線による空間線量率は、0.025 μ Sv/h と推測された。